

Stochastree.

a crop transition model based on stochastic decision trees, which integrates agronomic constraints.

L. Sorel, C. Walter, P. Durand, V. Viaud (speaker)

Spatial landscape modelling

Rationale 1/2

Environmental assessment of agrosystems

Assessment of alternate agricultural practices:

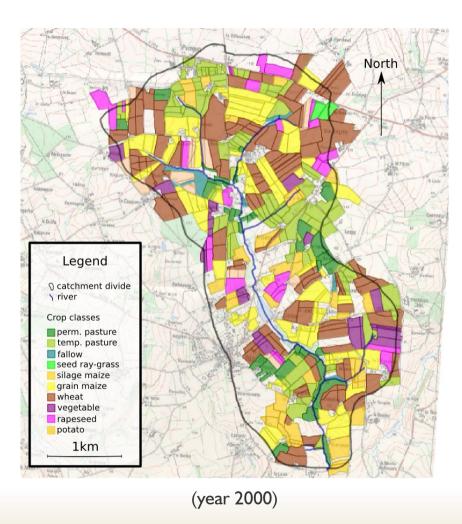
- Iandcover rules the location of practices over the landscape
- the spatial distribution of practices influences the ecological response of the landscape
- organic matter transfer and transformation processes have dynamics spanning over decades in 1st order catchments
- -> scenario-based analyses requires **spatialised** and **long-term** datasets and modelling approaches

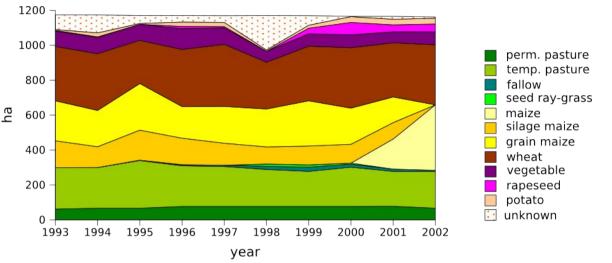
Rationale 2/2

Crop transition modelling

Several approaches exist, but...

- most models focus either on crop succession or spatial structure
- their tuning often require strong expertise, large datasets, arbitrary decision
- (complexity and validation?)

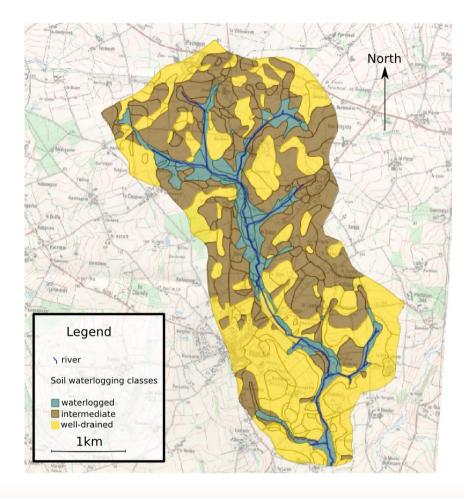

Objective

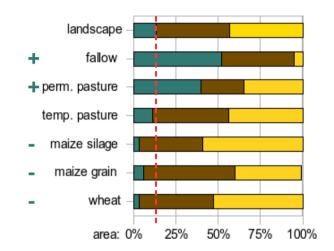

To stochastically simulate crop transition while accounting for agronomic, spatial and temporal driving factors

- datamining approach to identify the drivers (1993-98 dataset)
- validation of the model and simulations (1998-2002 dataset)
- comparison with a 1st order Markov chain model (transition probability matrix)

The case study landscape – landcover change drivers

Landcover dynamics

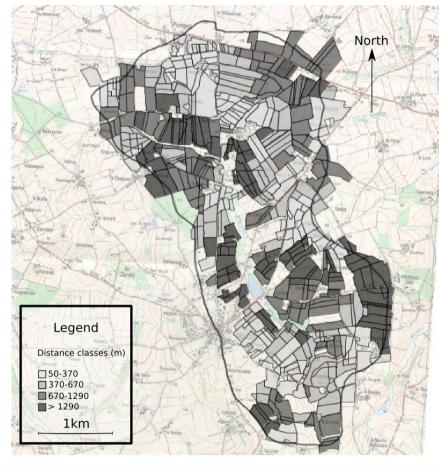



Naizin catchment (Morbihan, France)

- I 2km², 80% dedicated to intensive farming
- farm-types (pigs, dairy cows, mix) are characterised by specific crop area proportions (≈production objectives)
- cultivated areas are stationary
- field patterns are assumed static, few exchanges of fields between farmsteads

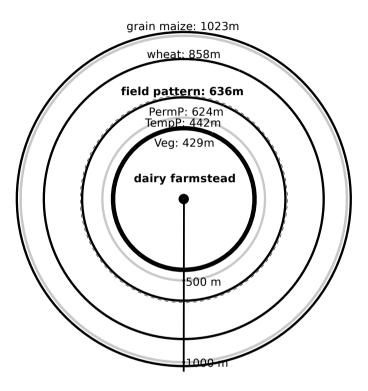
Spatial landscape modelling

Soil waterlogging



Crop allocation on soil waterlogging classes

- perm. pastures and fallows on waterlogged soils
- cereals on well-drained soils


Spatial landscape modelling

Spatial distribution of crops around the farmstead

(year 2000)

Spatial landscape modelling

Area-weighted distance (AWD) between the fields and the farmsteads of a given farm-type

- dairy field pattern is strongly spatially structured
- pastures are close to the farmstead, cereals are further
- 4th June 2008 Stochastree

Effect of preceding crop on the transition process

Spatial landscape modelling

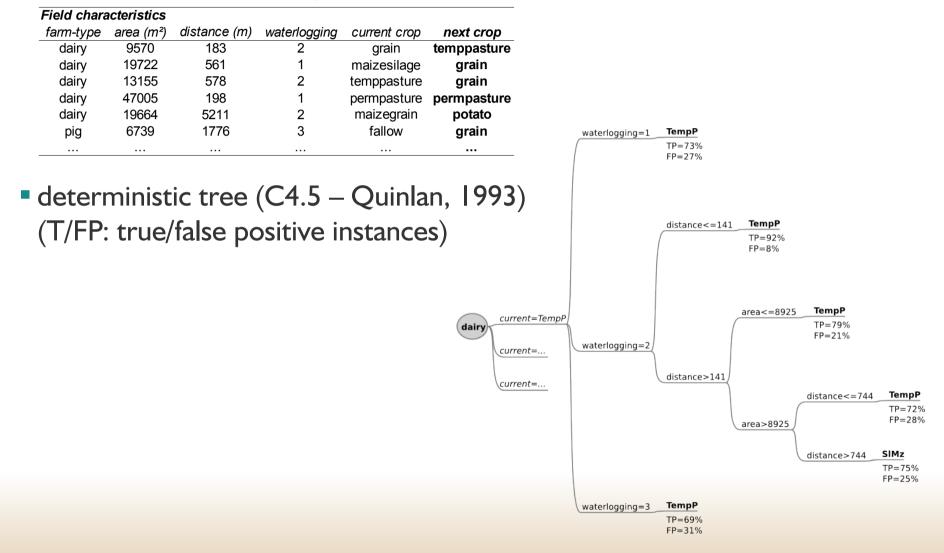
The *Rotomatrix* model

An empirical construction (1993-1998 annual transitions)

generic transition probability matrix

	landuse N+1									
landuse N	perm. pasture	temp. pasture	fallow	seed ray-grass	silage maize	grain maize	wheat	vegetable	rapeseed	potato
perm. pasture	1									
temp. pasture		0.71	0.01		0.12	0.03	0.08	0.05		0.01
fallow			0.33		0.13	0.13	0.27	0.13		
seed ray-grass				0.58		0.25	0.17			
silage maize		0.2	0.02		0.24	0.03	0.4	0.09	0.01	0.01
grain maize		0.03	0.02		0.02	0.32	0.47	0.12		0.02
wheat		0.13	0.01	0.01	0.15	0.33	0.2	0.14	0.01	0.04
vegetable	0.02	0.1	0.01		0.14	0.14	0.45	0.11		0.03
rapeseed						0.3	0.4	0.2		0.1
potato		0.08			0.1	0.36	0.38	0.08		

• dairy transition probability matrix (farm-type specific matrix)


	landuse N+1							
landuse N	perm. pasture	temp. pasture	silage maize	grain maize	wheat	vegetable	rapeseed	potato
perm. pasture	1							
temp. pasture		0.73	0.15	0.01	0.05	0.05	0.01	0.01
silage maize		0.25	0.25	0.03	0.39	0.06	0.01	
grain maize		0.09	0.17	0.04	0.57	0.04		0.09
wheat		0.33	0.32	0.08	0.23	0.03		0.02
vegetable	0.03	0.31	0.23	0.09	0.31	0.03		
rapeseed					0.75			0.25
potato		0.29	0.07		0.64			

Spatial landscape modelling

The Stochastree model

A datamining construction (1993-1998 annual transitions)

structure of the learning dataset:

Spatial landscape modelling

The Stochastree model

A datamining construction (1993-1998 annual transitions)


structure of the learning dataset:

Field chara	acteristics				
farm-type	area (m²)	distance (m)	waterlogging	current crop	next crop
dairy	9570	183	2	grain	temppasture
dairy	19722	561	1	maizesilage	grain
dairy	13155	578	2	temppasture	grain
dairy	47005	198	1	permpasture	permpasture
dairy	19664	5211	2	maizegrain	potato
pig	6739	1776	3	fallow	grain

- deterministic tree (C4.5 Quinlan, 1993)
- TP and FP proportions at tree leaves were used as probabilities

- "current crop" is always the first tested attribute (temporal driver)
- tree structure integrates the spatial drivers between the current and predicted crops on a case per case basis

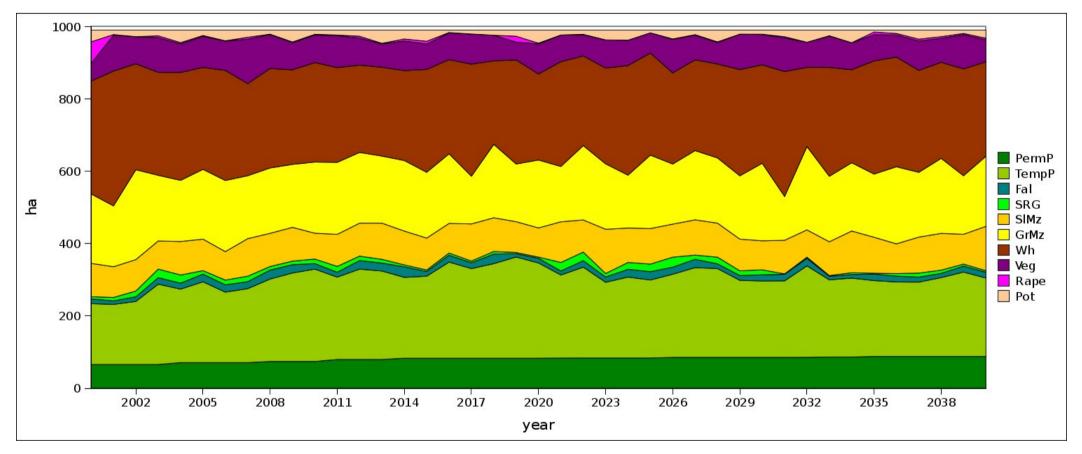
Spatial landscape modelling

dairy

Model comparison (short term)

Prediction rate on a validation dataset (1998-2002 annual transition)

	simulation method							
	Roto	matrix	Stoch	random				
	generic	specific	generic	specific				
expected crop		successfull prediction rates (%)						
perm. pasture	97	97	97	97	10			
temp. pasture	52	54	52	55	10			
fallow	21	31	22	32	10			
silage maize	16	18	14	17	9			
grain maize	30	32	34	34	11			
wheat	36	39	38	41	9			
vegetable	13	10	12	12	10			
rapeseed	0	0	1	0	10			
potato	3	5	4	7	10			
(all)	38	40	39	41	10			


stochastic trees and matrices perform better than pure random classifier

- farm-type specific matrices/trees perform usually better than generic ones (temp. pastures, fallow, cereals, potato)
- minor crops have low prediction rates
- no significant difference between Rotomatrix and Stochastree

Spatial landscape modelling

Long term simulations

Landcover area dynamics (farm-type specific decision trees)

- initial state = year 2000, duration = 40 years
- reproduction of stationary crop areas
- similar ability of Rotomatrix and Stochastree to reproduce farm-type production objectives

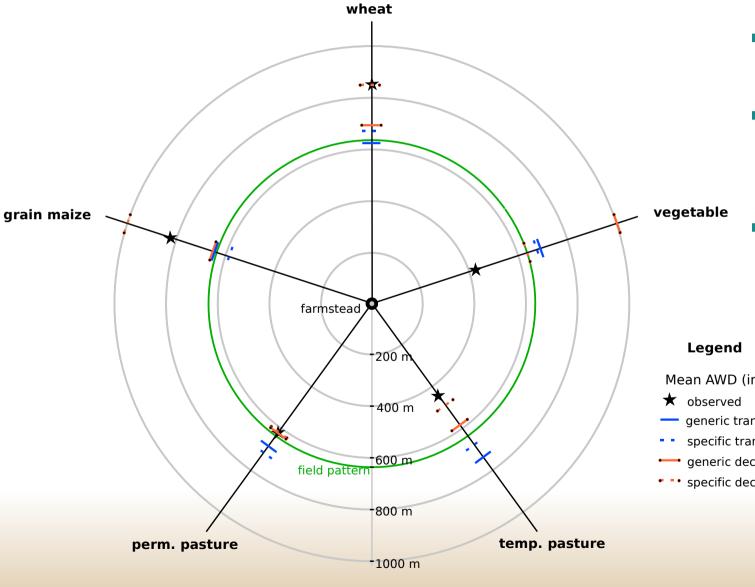
Spatial landscape modelling 4th June 2008 – Stochastree

Long term simulations

Crop allocation on the waterlogged soil class (13% landscape area)

		difference between observed and simulated area %					
crop class	observed area %	Roto	matrix	Stochastree			
	on waterlogged soils	generic	specific	generic	specific		
fallow	52%	-43%	-39%	-24%	-9%		
temp. pasture	8%	-1%	-3%	-1%	-4%		
silage maize	3%	2%	2%	1%	1%		
grain maize	9%	2%	1%	2%	1%		
wheat	4%	3%	3%	1%	3%		

Global trend to homogenize area % to the landscape waterlogged soil area (13%) Concerning fallows:


- Stochastree performed better than Rotomatrix
- specific trees/matrices performed better than generic ones

Other crops:

similar ability of Rotomatrix and Stochastree to comply with crop water sensitivity

Long term simulations

Spatial distribution of crops around the dairy farmstead

- Stochastree performed better than **Rotomatrix**
- specific trees/matrices performed better than generic ones
- global trend to homogenize crop AWD to the field pattern AWD

Mean AWD (in m):

- generic transition matrix
- specific transition matrices
- generic decision tree
- specific decision trees

Spatial landscape modelling

Conclusion and perspectives

Results

- model construction based on datamining (not expertise)
- validation based confrontation with observed data
- structural analogy between the decision trees and the transition matrices
- Itransition matrices may implicitly integrate some soil waterlogging constraints
- decision trees maintain the spatial distribution of crops around the farmstead

Limits

- drivers stationarity is required during the construction of the trees/matrices, and in the comparison between simulated and observed data
- consequences of alternate trees are hard to forecast (conditional probabilities)

Perspectives

- model coupling: with distributed biophysical models (crop growth, water and nutrient fluxes), gene flow models, etc.
- use of decision trees to simulate an initial landcover state from a blank field pattern, farm-type, distance and waterlogging information

Spatial landscape modelling